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Abstract

Least squares methods based on first-order systems have been recently

proposed and analyzed for second-order elliptic equations and systems. They

produce symmetric and positive definite discrete systems by using standard

finite element spaces, which are not required to satisfy the inf-sup condition.

In this paper, several domain decomposition algorithms for these first-order

least squares methods are studied. Some representative overlapping and

substructuring algorithms are considered in their additive and multiplicative
variants. The theoretical and numerical results obtained show that the clas-

sical convergence bounds (on the iteration operator) for standard Galerkin

discretizations are also valid for least squares methods.
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1 Introduction

Least squares methods have been proposed in recent years for second-order el-

liptic problems, Stokes and Navier-Stokes equations; see Chang [10], Bochev

and Gunzburger [2], Pehlivanov, Carey, and Lazarov [15], Cai, Lazarov, Man-

teuffel, and McCormick [5], Cai, Manteuffel, and McCormick [7], Bramble,

Lazarov, and Pasciak [3], Bramble and Pasciak [4], Carey, Pehlivanov, and

Vassilevski [8], Cai, Manteuffel, and McCormick [6], Bochev, Cai, Manteuffel,

and McCormick [1], and the references therein.

Among the possible approaches, we follow here the one introduced in the

very recent works of Pehlivanov, Carey, and Lazarov [15] and Cai, Manteuf-

fel, and McCormick [7]. The second-order elliptic problem is rewritten as a

first-order system and a least squares functional is introduced. The result-

ing discrete minimization problem is associated with a bilinear form which is

continuous and elliptic on an appropriate space. Therefore, the inf-sup condi-

tion is avoided and standard finite element spaces can be used. The resulting

linear system is symmetric, positive definite and has condition number of the

same order as standard Galerkin finite element stiffness matrices, O(1/h2).

An interesting alternative approach by Bramble, Lazarov, and Pasciak [3] is

based on replacing one of the L2-terms in the least squares functional by a
discrete H-l-norm. We will not consider here such an alternative.

The goal of this paper is to extend to these least squares methods some of

the classical domain decomposition algorithms which have been successfully

employed for standard Galerkin finite elements. We show that optimal and

quasi-optimal convergence bounds follow easily from the standard Galerkin

case. Therefore, domain decomposition provides highly parallel and scalable

solvers also for first-order system least square discretizations. An overview of

domain decomposition methods can be found in the review papers by Chan

and Mathew [9], Dryja, Smith, and Widlund [11], Dryja and Widlund [13],

and Le Tallec [14].

This paper is organized as follows. In the next section, we briefly review

the first-order system least squares methodology and the main results from

[7]. In Section 3, we introduce and analyze our domain decomposition algo-

rithms: overlapping additive Schwarz methods (with coupled and uncoupled

subspaces; see 3.1), overlapping multiplicative Schwarz methods (3.2), and

an iterative substructuring method (3.3). In Section 4, we present numerical

results in the plane that confirm the theoretical bounds obtained.



2 First-Order System Least Squares

We consider the following second-order elliptic problem on a bounded domain

f_ C R 2 or R 3

-V.(AVp)+Xp = f in't,
p = 0 onFD,

n. AVp = 0 onFN.

(1)

Here A is a symmetric and uniformly positive definite matrix with entries in

L°°(fl), X is a first-order linear differential operator, FD U FN = Of_, and n

is the outward normal unit vector to FN.

Defining the new flux variable u = -AVp, the system (1) can be rewritten

as a first-order system:

u+AVp = 0 inFt,

V-u+Xp = f infl,

p = 0 onFD,

n-u = 0 on FN,

(2)

This system can be extended to the equivalent system

u+AVp = 0 infl,

V-u+Xp = f infl,

VxA-lu = 0 inFt,

p ---- 0 onFD,

n • u = 0 on FN,

7r(A-lu) = 0 on FD,

(3)

_.2,.. GqUl __
where V x is the curl operator (in two dimensions X'7x u = 0 means o, oy -

0) and 3,,u = u x n (in two dimensions %u = u-r).

The following least squares functionals, Go for the system (2) and G for

the augmented system (3), were studied in [5] ([151 for the case X = 0) and

[7], respectively:

G0(v, q; f) = Ilv + AVq 11 2<n)+ IIv • v + Xq - fllL2(a)= (4)

V(v, q) E Wo(div; D) x V, and

' " r1122 -t- -1 :2G(v,q,f)= IIv+AVqll[_(a)+llV'v+Xq-j,,L (n) IlV×(A v)llL=(a)(5)
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V(v, q) E W x V.
Here the functional spaces are defined as

W0(div; a) = {v 6 H(div;ft):n.v = 0 on FN},

Wo(curIA;a) = {v E H(curla;fl): %(A-iv) = 0 on FD},

W = Wo(div; _) N Wo(curIA; fl),

V = {q E H'(f'/): q = 0 on FD}.

The least squares minimization problems for (2) and (3) are, respectively:

Find (u,p) C Wo(div; _) x V such that

Go(u,p;f) -- inf Go(v,q;f); (6)
(V,q)EWo(div;12) x V

Find (u,p) E W x V such that

G(u,p;f) = inf G(v,q;f). (7)
(v,q)_Wxy

Simple calculations show that the associated variational problems are,

respectively:

Find (u,p) E Wo(div; _) × V such that

ao(u,p; v, q) = F(v,q) V(v,q) E Wo(div;a)× V; (S)

Find (u, p) C W x V such that

a(u,p; v, q) = F(v,q) V(v,q) E W × tL (9)

Here the bilinear forms are

ao(u,p;v,q) = (u + AVp, v + AVq)L 2 + (V. u + Xp, V. v + Xq)L 2,

a(u,p;v,q) = ao(u,p;v,q) + (V × (A-'u),V × (A-'V))L2

and the right-hand side is

F(v,q)=(f,V.v+Xq)L 2.

In [5], it was proved that a0(v, q;v, q) is equivalent to (continuous and

elliptic with respect to) the H(div; f_) × Hi(12) norm on Wo(div; f_) x V, under
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the assumption that a Poincar6-Friedrichs inequality holds for p (denoted by

assumption A0). For the case X = 0, this was already proved in [15].

In [7], it was proved that a(v,q; v,q) is equivalent to the [H(div; _) A

H(curIA; fl)] × Hl(f_) norm on W × V, under the same assumption A0.

Moreover, under three additional technical assumptions denoted by A1, A2,

A3, it is proven in [7] that a(v, q; v, q) is equivalent to the Hl(ft) d+l norm

onWxV(d=2or3):

Theorem 1 Let b(u,p;v,q) = (U,V)HI(_)d + (p,q)gl(_) be the bilinear form

associated with the HI(_) d+l norm.

If the assumptions AO-A3 of [7] are verified, then there exist positive

constants _ and/3 such that

ab(v, q; v, q) <_ a(v,q;v,q) V(v,q) E W × V,

and

a(u,p;v,q) < flb(u,p;u,p)'/2b(v,q;v,q) U2

V(u,p), (v,q)E W x V.

Because of the equivalence of a(., .) and b(., .), from now on we will concen-

trate on the variational problem (9) associated with the augmented system

(3).

We introduce a triangulation rh of Yt and associated finite element sub-

spaces W h × V h C W x V. We then obtain a finite element discretization

of (9):

Find (Uh,Ph) E W h × V h such that

a(uh,ph;vh,qh) = F(vh, qh) V(vh, qh) E W h × V h. (10)

For simplicity, we consider continuous piecewise linear finite elements:

W _ = {v e C°(gt)d: VklT e P,(T), VT e rh,v e W} = W_ x 14_h × W3h,

V h = {q e C°(Ft): qlK E PI(K), VK e 7"h,q • V}.

and the subscript h for discrete functions will be dropped in the rest of the

paper.

Error estimates and results on the conditioning of the resulting stiffness

matrix can be found in [5] (in [15] for the case X = 0).

Upon choosing a basis in W h and Vh, the discrete problem (10) is turned

into a linear system of equations Ax = b. We are going to solve such system

iteratively using domain decomposition techniques.



3 Domain Decomposition Algorithms

We will introduce and analyze our domain decomposition algorithms in the

Schwarz framework, which has been very successful for standard Galerkin

finite elements, see [9], [11], [12], [13]. We illustrate the main ideas on algo-

rithms that are representative of the main classes of domain decomposition

(additive, multiplicative, overlapping, iterative substructuring). The same

analysis can be applied to the many other algorithms which have been pro-

posed and analyzed for the standard scalar case.

We suppose that the domain Q is first triangulated by a coarse finite

element triangulation rH consisting of N subdomains f_i of diameter H. The

fine triangulation rh is a refinement of rH. For simplicity, we suppose that

each subdomain is the image under a smooth map of a reference cube.

3.1 Overlapping Additive Schwarz Methods

Each subdomain f_i is extended to a larger subdomain f_, consisting of all

elements of rh within a distance (5 from f_i (0 < (5 < H).

Each scalar component of our finite element space W h x V h is decomposed

as in the standard scalar case:

N N N N

i=1 i=1 i---1 i=1

where

W[hi = {u E I_1_ : support(u) C ft'i}, k = 1,2,3,

V/h = {u E Vh: support(u) C f_'i}-

For each scalar component, a global coarse finite element space is associated

with the coarse triangulation rH:

Vv_h0 = H.'_u = {u C W2:u is trilinear on each subdomain Qi}, k = 1,2, 3,

t'; h = V H ---- {p _ V h : p is trilinear on each subdomain fli}-

A first additive method is defined by the following decomposition of the

discrete space, which maintains the local and coarse coupling between the



different scalarcomponents:

N

W h x Vh =__,W_ x _¢.
i=0

The local spaces are

W_xV_ h W h W,h W.h V,h i 1,2, ,N1,i X 2,i X 3,i X _--- '''

and the coarse space is

Who×Voh= W" ×V" = W,"× × ×V".

We define the local projection operators Pi " W h x V h _ W/h x V_h by

a(Pi(u,p);v,q)=a(u,p;v,q) V(v,q) E W_ × V/h,

and the coarse projection operator P0 " W h x V h --* W0 h x Voh by

a(Po(u,p); v, q) = a(u,p;v,q) V(v,q) E W0h × Voh.

It is easy to see that the matrix form of the local projections is Pi =

{ l if ekED, }RTA_-IRiA, where the Ri(ek) = 0 otherwise . are the restriction ma-

trices selecting only the unknowns in Ft_ for each component and the Ai =

RIAR r are the stiffness matrices of local Dirichlet problems. Analogously,

Po = RTAffRHA, where R T is the standard piecewise linear interpolation

matrix from the coarse grid rH to the fine grid rh, for each component, and

An = RnAR_ is the coarse grid discretization of our problem (9). Let

N

Paddl = E Pi.

i=0

The original discrete problem is then equivalent to the preconditioned prob-

lena

P_dl(U, p) = godda

where g = _N=0 Pi(u,p ) ; see Chan and Mathew [9]. In matrix form, this

problem can be written as M-lAx = M-ab, where the preconditioner is



M-1 = _;_1RT A"(1R; + RTHAH1RH • An optimal convergence bound for this

algorithm is given in Theorem 2.

A second additive method is obtained by dropping the coupling between

the different scalar components of u and p. Uncoupled local spaces are now

defined by

Whl,i = _qhi X {0} X {0} X {0},

w L {o}× w,h= _,,× {o}×{o),
W h3,_ {0)× {0)× w h= 3,i× {0},

v_ {0)× {o}× {o)× v _
and the coarse spaces by

Wl H = W h = W h1,0 1,0 × {0) × {0} X {0},

wf w _ W_o× {0}× {o},= _,o= {0} ×

W H = W h =3,o {o) × {o)× U_o× {o},

v" = Vo_= (o} × (o}× {o)× _¢.
We then have the following decomposition

N N N N

w_ ×v_= E w_,_+E w_,_+E wL +E
i=1 i=1 i=1 i=1

3 N N

= EEwL+E
k=l i=0 i=0

As before, we define projections Pk,i : W h ×

0,1,...,N and P4s " Wh z V h --, Vh,, i =

operator

vf +w_ +wf +wg +v"

v_.

V h---* W)i, k = 1,2,3, i =

0,1,...,N, and the additive

3 N N

Poed2=EEPk,_+EP4,_.
k=l i=0 i=0

We note that this algorithm can equivalently be defined by the same choice

of subspaces as for P_ddl but using the bilinear form b(.,.) (introduced in

Theorem 1) instead of a(-, .) in the definition of the projections. In fact this

uncoupled preconditioner corresponds to applying four identical copies of a

scalar preconditioner to each scalar component. An optimal bound also holds

for this algorithm.



Theorem 2 There exists a positive constant C independent of h,, H and 6

such that
F J"

cond(P) <_ C(1 + _-),

where P = Paddl 07" P = Padd2 •

Proof. An upper bound on the spectrum of P is standard, since each point of

f_ belongs to a fixed number of extended subdomains independent of N (for

example, for (5 < H/2 each point belongs to at most four (in 2D) or eight (in

3D) extended subdomains). A lower bound is obtained by classical Schwarz

analysis.

For P = P_Jal, since we use exact projections, the theorem is equivalent

to the following partition property (see Dryja and Widlund [13] or Chan and

Mathew [9]):

There exists a constant Co such that V(u,p) E W h x V h, there exists a

-.----_"]4=o(Ui,Pi), with (ui,Pi) C whi × Vih such thatdecomposition (u,p) U

N

a(ui,pi;ui,pi) <_ Cga(u,p;u,p).
i=0

By the equivalence of Theorem 1, this inequality is equivalent to

N

Z I(u,, 2 _ Co l(u,p,)l(m)d+l < PlI(H,)d+I,
i=0

which is a direct consequence of the scalar result proven by Dryja and Wid-

lund [13]:
N N

2 k2

i=0 i=0

with Co: = C(1 + _).

For P = P_de2, since the subspaces are the same but we use inexact

projections defined by b(.,.) instead of a(-,.), we need only to show that

there exists a constant w such that a(u,p;u,p) <_ a:b(u, p; u,p) V(u,p) E

W h x Viih, i = 0,1,--.,N (see Dryja and Widlund [12]). This follows

immediately from the equivalence of a and b.



3.2 Overlapping Multiplicative Schwarz Methods

By using the same coupled local and coarse spaces as in the additive algorithm

Pad41, we can define a multiplicative operator:

Pm_zt = I - (I - PN)"" (I -- P1)(I - P0).

The multiplicative algorithm consists in solving the nonsymmetric system

Pm_t_(u,p) = g_t,

by an iterative method such as GMRES.

We can also define a symmetrized multiplicative operator

Pmutts = I-(I- Po)...(I- P/v-1)(I - P:v)(I- PN-1)'''(I-- Po)

and a symmetrized algorithm, consisting in solving the symmetric system

Pm_l,s(u, p) = gm.l,s

by an iterative method like CG.

Theorem 3 There exists a positive constant C independent of h, H and

such that
H

co_d(Pm_,s)< C(1 + T).

The proof is again based on the extension of the scalar result (see, for exam-

ple, Chan and Mathew [9]) by using the equivalence of Theorem 1. Analo-

gously, multiplicative versions of Padd2 could be built using uncoupled local

and coarse spaces.

3.3 An Iterative Substructuring Method

For a complete and detailed analysis of this class of methods, we refer to

Dryja, Smith and Widlund [11]. Here we consider only a simple represen-

tative of this class, namely the analog of Algorithm 6.2 in [11], which is

vertex-based and has a standard coarse space. For simplicity, we only con-

sider the uncoupled additive version.



The standard first step of nonoverlappingmethodsis the elimination of
the variablesinterior to eachsubdomain(at least implicitly). W'ethen work
with the SchurcomplementS = KBs - KTBK[_KIs of the stiffness matrix

( IQI K,B )K= KT B KBB "

The reduced linear system with S involves only variables on the interface

F = UOfli \ FD. When solving with a preconditioned iterative method, we

need only the action of S on a given vector and there is no need to assemble

,5' explicitly.

In the Schwarz framework, working with S corresponds to working with

the discrete harmonic subspace VVn × 171hof the original space W h × V h.

Local spaces are associated with the geometric objects (faces Fi, edges Ei

and vertices vi) forming the interface F. Each scalar space is decomposed as

Fi Ei vi

and

Fi Ei vi

Here, for example, I_F _ = {u C 12dh : u = 0 on Fh -- Fi,h}, where Fh and Fi,h

are the set of nodes on F and Fi respectively. The other spaces are defined

analogously. As for the overlapping case, we then embed these scalar spaces

in our product space xCVh × l/h: for example, VC_,F, = _'_V, × {0} × {0} × {0).

As a coarse space, we consider the discrete harmonic subspace of the same

coarse space used for Padd2, i.e., "V;¢H + Vf-H + X_v-H+ vH. We obtain the

following decomposition

3

k=l Fi Ei vi

9 h 9 h 9 h v".+E
Fi E, vi

By defining as before projection operators into the subspaces, we form the

additive operator

4

P,, = _ (_-_ Pk,F, + Z Pk,E, + _ Pk,v, + Pk,o),
k=l Fi Ei v,
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where again for k = 4 the projections are into the V/h spaces.

Theorem 4

that

There exists a positive constant C independent of h, and H such

cond(P_) < C(1 + log(H/h)) 2.

As before, the proof is based on the extension of the scalar result (see Dryja,

Smith and Widlund [11], Theorem 6.2) by using the equivalence of Theorem

1.

4 Numerical Results

In this section, we report the results of numerical experiments which confirm

the optimal convergence bounds obtained in the previous sections. All the

results have been obtained with Matlab 4.2 running on Sun Sparcstations.

The model problem considered is the standard Poisson equation (A = I, X =

0) on the unit square, with p = 0 on FD = Oft and 7,u = 0 on Oft (i.e. U 1 = 0

on {y=0} and {y= 1}; u2 = 0 on {x=0} and {x= 1}). The right-hand

side f is chosen such that we have p(x,y) = sin(_rx)sin(rcy) as exact solution.

ft is decomposed into a regular grid of N square subdomains, with N varying

from 2 x 2 to 8 x 8. The fine grid mesh size h varies from 1/32 to 1/128.

The Krylov method used for all the symmetric problems is PCG, while

we use GMRES for the nonsymmetric problem with Pm_tt. The initial guess

is always zero and the stopping criterion is Hrki[2/[[roH2 < 10 -6, where rk is

the residual at step k.

The local and coarse problems involved in the application of the precon-

ditioners are always solved directly. For each method, we report the number

of iterations and Lanczos-based estimates of the condition number and the

extreme eigenvalues (except for the multiplicative algorithm, where we report

the average convergence factor instead).

Overlapping additive methods. We have first studied the coupled method

P_ddl with fixed minimal overlap size 5 = h. The mesh size h is decreased

while the number of subdomains N is increased proportionally, so that the

subdomain size H/h = 16 is kept constant (H = 1/v'_). The results are re-

ported in Table 1 and clearly show a constant condition number cond(Paadl ) =

/_rnax/._rnin, for problem sizes from 3007(N = 4) to 48895(N = 64).
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Table 1: P_dd1:Overlapping Additive Schwarz with fixed overlap size _ = h.

N h -1 iter. cond(Paaal) /_._ _r_i=

4 32

9 48

16 64

25 80

36 96

49 112

64 128

16 11.2172 4.0048 0.3570

19 12.1787 4.0068 0.3290

20 11.9775 4.0050 0.3343

20 11.1689 4.0052 0.3586

21 12.5450 4.0044 0.3192

20 11.9944 4.0050 0.3339

21 12.5500 4.0047 0.3191

Table 2: P_ddl: Overlapping Additive Schwarz with fixed number of subdo-

mains N= 64.
5

h

2h

3h

4h
5h

6h

7h

h -1 iter. cond(Paddl) Amax /_min

128

128

128

128

128

128

128

21 12.5500 4.0047 0.3191

17 7.1316 4.0307 0.5651

16 5.5769 4.0765 0.7309

15 4.9540 4.1396 0.8356

15 4.6460 4.2170 0.9076

15 4.5125 4.3054 0.9541

16 4.5859 4.4018 0.9598
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Table 3:Padu2: OverlappingAdditive Schwarzwith fixed overlap size 6 = h.

N h -1 iter. cond(Paeu2) Ama_ Amin

4 32

9 48

16 64

25 80

36 96

49 112

64 128

17 10.3521 4.0050 0.3868

20 12.6290 4.0051 0.3171

20 11.9811 4.0051 0.3342

21 11.3821 4.0052 0.3518

21 12.5458 4.0043 0.3191

20 11.9997 4.0052 0.3337

21 12.5261 4.0047 0.3197

Table 4:P_de2

mains N = 64.

• Overlapping Additive Schwarz with fixed number of subdo-

h -1

h 128

2h 128

3h 128

4h 128

5h 128

6h 128

7h 128

iter. cond(P_ee2) Am_x Amin

21 12.5261 4.0047 0.3197

17 7.1206 4.0315 0.5661

16 5.5513 4.0777 0.7345

16 5.3850 4.1442 0.7695

16 5.4545 4.2233 0.7742

16 5.5306 4.3158 0.7803

16 5.6176 4.4297 0.7885

13



Table 5: Pm_,tt and Pin,as: Overlapping Multiplicative Schwarz with fixed

overlap size 6 = h.

multiplicative (GMRES) symmetrized multiplicative (CG)

N h -1 iter. p=(ri/ro) 1/i iter. cond(Pmults) "_rnax /_min

4 32

9 48

16 64

25 80

36 96

49 112

64 128

8 0.1847

7 0.!433

6 0.1233

6 0.1102

6 0.1021

6 0.0952

5 0.0849

7 1.8576 0.9994 0.5379

6 1.7398 0.9999 0.5749

6 1.7600 0.9999 0.5681

6 1.6810 0.9999 0.5948

6 1.6940 0.9999 0.5902

6 1.6661 0.9999 0.6001

6 1.7308 0.9999 0.6079

In Table 2, we fix the mesh size (h = 1/128) and the decomposition

(N = 64) and we vary the overlap size $ from h to 7h. As in the scalar case,

the condition number cond(P_ddl) improves as 6 increases, because of train

being closer to unity. For large overlap, the improvement becomes negligible

or negative, because of the growth of ,_m_.

The same sets of results for the uncoupled method P_de2 are reported

in Table 3 and Table 4, respectively. For this simple model problem, the

uncoupled method is only slightly worse than the coupled one, in terms of

iteration count (some condition numbers are almost the same or even better

for P_dd2)- We point out that although A = I, eliminating diffusive coupling

between the flux components, there is still coupling between the flux variables

and p, so the strong performance of P_de2 is encouraging.

Overlapping multiplicative methods. In Table 5, we compare the multi-

plicative method Pm_,_ accelerated with GMRES and the symmetrized mul-

tiplicative method P_,_ts accelerated with CG. We consider the two methods

with minimal overlap and constant subdomain size. Since Pm_,tt is nonsym-

metric, we report the average convergence factor p = (ri/ro) Ui instead of the

condition number. Even if the symmetrized version is approximately twice

as expensive as the standard one, the number of iterations is almost the same

for the two methods. Therefore, the symmetrized version is less efficient on

this simple problem.

14



Table
h-1

6:

4 32

9 48

16 64

25 80

36 96

49 112

64 128

iter. cond(Pis) Im_:

Pis: Iterative Substructuring .
_min

9 3.4035 1.5691 0.4610

17 7.8812 1.8497 0.2347

18 7.8543 1.7962 0.2287

18 8.5822 1.8864 0.2198

19 9.4115 1.8511 0.1966

18 8.6646 1.8939 0.2185

19 9.6532 1.8617 0.1928

Iterative substructuring. Table 6 shows the results for the iterative sub-

structuring methods Pis with fixed subdomain size. They clearly show a

constant bound for the condition number and the number of iterations.

5 Conclusions

In this paper, some domain decomposition algorithms have been introduced

for the discrete systems arising from first-order system least squares methods

applied to second-order elliptic problems. These recently proposed methods

allow the use of standard finite element spaces, which are not required to

satisfy the inf-sup condition.

The analysis of the domain decomposition algorithms follows from analo-

gous results for the standard Galerkin case and the equivalence between the

bilinear form associated with the least squares functional and the Hl(f_) d+l

norm.

Optimal convergence bounds have been proven for overlapping algorithms

(additive, multiplicative, coupled, uncoupled versions), while quasi-optimal

bounds have been proven for iterative substructuring algorithms. Numerical

experiments on a simple model problem confirm these bounds.

Future work will investigate the performance of these algorithms for prob-

lems with convection and for elliptic systems.
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